본문 바로가기

(ebook) Biomedical Imaging: Principles and Applications > SKKU

본문 바로가기

회원메뉴

쇼핑몰 검색

회원로그인

회원가입

오늘 본 상품 1

  • (ebook) Biomedical Imaging: Principles and Applications
    (ebook) Bi 47,000
(ebook) Biomedical Imaging: Principles and Applications > SKKU
메인으로

(ebook) Biomedical Imaging: Principles and Applications 요약정보 및 구매

저자 : Reiner Salzer

상품 선택옵션 0 개, 추가옵션 0 개

위시리스트0
시중가격 47,000원
판매가격 47,000원
출판사 Wiley
발행일2012
ISBN 9781118271926
페이지448 pages
언어 ENG
포인트 0점
배송비결제 주문시 결제

선택된 옵션

  • (ebook) Biomedical Imaging: Principles and Applications
    +0원
위시리스트
  • 상품 정보

    상품 상세설명


    This book presents and describes imaging technologies that can be used to study chemical processes and structural interactions in dynamic systems, principally in biomedical systems. The imaging technologies, largely biomedical imaging technologies such as MRT, Fluorescence mapping, raman mapping, nanoESCA, and CARS microscopy, have been selected according to their application range and to the chemical information content of their data. These technologies allow for the analysis and evaluation of delicate biological samples, which must not be disturbed during the profess. Ultimately, this may mean fewer animal lab tests and clinical trials. 

    상품 정보 고시

  • 사용후기

    Preface xv

    Contributors xvii

    1 Evaluation of Spectroscopic Images 1
    Patrick W.T. Krooshof, Geert J. Postma, Willem J. Melssen, and Lutgarde M.C. Buydens

    1.1 Introduction, 1

    1.2 Data Analysis, 2

    1.2.1 Similarity Measures, 3

    1.2.2 Unsupervised Pattern Recognition, 4

    1.2.2.1 Partitional Clustering, 4

    1.2.2.2 Hierarchical Clustering, 6

    1.2.2.3 Density-Based Clustering, 7

    1.2.3 Supervised Pattern Recognition, 9

    1.2.3.1 Probability of Class Membership, 9

    1.3 Applications, 11

    1.3.1 Brain Tumor Diagnosis, 11

    1.3.2 MRS Data Processing, 12

    1.3.2.1 Removing MRS Artifacts, 12

    1.3.2.2 MRS Data Quantitation, 13

    1.3.3 MRI Data Processing, 14

    1.3.3.1 Image Registration, 15

    1.3.4 Combining MRI and MRS Data, 16

    1.3.4.1 Reference Data Set, 16

    1.3.5 Probability of Class Memberships, 17

    1.3.6 Class Membership of Individual Voxels, 18

    1.3.7 Classification of Individual Voxels, 20

    1.3.8 Clustering into Segments, 22

    1.3.9 Classification of Segments, 23

    1.3.10 Future Directions, 24

    References, 25

    2 Evaluation of Tomographic Data 30
    Jörg van den Hoff

    2.1 Introduction, 30

    2.2 Image Reconstruction, 33

    2.3 Image Data Representation: Pixel Size and Image Resolution, 34

    2.4 Consequences of Limited Spatial Resolution, 39

    2.5 Tomographic Data Evaluation: Tasks, 46

    2.5.1 Software Tools, 46

    2.5.2 Data Access, 47

    2.5.3 Image Processing, 47

    2.5.3.1 Slice Averaging, 48

    2.5.3.2 Image Smoothing, 48

    2.5.3.3 Coregistration and Resampling, 51

    2.5.4 Visualization, 52

    2.5.4.1 Maximum Intensity Projection (MIP), 52

    2.5.4.2 Volume Rendering and Segmentation, 54

    2.5.5 Dynamic Tomographic Data, 56

    2.5.5.1 Parametric Imaging, 57

    2.5.5.2 Compartment Modeling of Tomographic Data, 57

    2.6 Summary, 61

    References, 61

    3 X-Ray Imaging 63
    Volker Hietschold

    3.1 Basics, 63

    3.1.1 History, 63

    3.1.2 Basic Physics, 64

    3.2 Instrumentation, 66

    3.2.1 Components, 66

    3.2.1.1 Beam Generation, 66

    3.2.1.2 Reduction of Scattered Radiation, 67

    3.2.1.3 Image Detection, 69

    3.3 Clinical Applications, 76

    3.3.1 Diagnostic Devices, 76

    3.3.1.1 Projection Radiography, 76

    3.3.1.2 Mammography, 78

    3.3.1.3 Fluoroscopy, 81

    3.3.1.4 Angiography, 82

    3.3.1.5 Portable Devices, 84

    3.3.2 High Voltage and Image Quality, 85

    3.3.3 Tomography/Tomosynthesis, 87

    3.3.4 Dual Energy Imaging, 87

    3.3.5 Computer Applications, 88

    3.3.6 Interventional Radiology, 92

    3.4 Radiation Exposure to Patients and Employees, 92

    References, 95

    4 Computed Tomography 97
    Stefan Ulzheimer and Thomas Flohr

    4.1 Basics, 97

    4.1.1 History, 97

    4.1.2 Basic Physics and Image Reconstruction, 100

    4.2 Instrumentation, 102

    4.2.1 Gantry, 102

    4.2.2 X-ray Tube and Generator, 103

    4.2.3 MDCT Detector Design and Slice Collimation, 103

    4.2.4 Data Rates and Data Transmission, 107

    4.2.5 Dual Source CT, 107

    4.3 Measurement Techniques, 109

    4.3.1 MDCT Sequential (Axial) Scanning, 109

    4.3.2 MDCT Spiral (Helical) Scanning, 109

    4.3.2.1 Pitch, 110

    4.3.2.2 Collimated and Effective Slice Width, 110

    4.3.2.3 Multislice Linear Interpolation and z-Filtering, 111

    4.3.2.4 Three-Dimensional Backprojection and Adaptive Multiple Plane Reconstruction (AMPR), 114

    4.3.2.5 Double z-Sampling, 114

    4.3.3 ECG-Triggered and ECG-Gated Cardiovascular CT, 115

    4.3.3.1 Principles of ECG-Triggering and ECG-Gating, 115

    4.3.3.2 ECG-Gated Single-Segment and Multisegment Reconstruction, 118

    4.4 Applications, 119

    4.4.1 Clinical Applications of Computed Tomography, 119

    4.4.2 Radiation Dose in Typical Clinical Applications and Methods for Dose Reduction, 122

    4.5 Outlook, 125

    References, 127

    5 Magnetic Resonance Technology 131
    Boguslaw Tomanek and Jonathan C. Sharp

    5.1 Introduction, 131

    5.2 Magnetic Nuclei Spin in a Magnetic Field, 133

    5.2.1 A Pulsed rf Field Resonates with Magnetized Nuclei, 135

    5.2.2 The MR Signal, 137

    5.2.3 Spin Interactions Have Characteristic Relaxation Times, 138

    5.3 Image Creation, 139

    5.3.1 Slice Selection, 139

    5.3.2 The Signal Comes Back—The Spin Echo, 142

    5.3.3 Gradient Echo, 143

    5.4 Image Reconstruction, 145

    5.4.1 Sequence Parameters, 146

    5.5 Image Resolution, 148

    5.6 Noise in the Image—SNR, 149

    5.7 Image Weighting and Pulse Sequence Parameters TE and TR, 150

    5.7.1 T2-Weighted Imaging, 150

    5.7.2 T ∗ 2 -Weighted Imaging, 151

    5.7.3 Proton-Density-Weighted Imaging, 152

    5.7.4 T1-Weighted Imaging, 152

    5.8 A Menagerie of Pulse Sequences, 152

    5.8.1 EPI, 154

    5.8.2 FSE, 154

    5.8.3 Inversion-Recovery, 155

    5.8.4 DWI, 156

    5.8.5 MRA, 158

    5.8.6 Perfusion, 159

    5.9 Enhanced Diagnostic Capabilities of MRI—Contrast Agents, 159

    5.10 Molecular MRI, 159

    5.11 Reading the Mind—Functional MRI, 160

    5.12 Magnetic Resonance Spectroscopy, 161

    5.12.1 Single Voxel Spectroscopy, 163

    5.12.2 Spectroscopic Imaging, 163

    5.13 MR Hardware, 164

    5.13.1 Magnets, 164

    5.13.2 Shimming, 167

    5.13.3 Rf Shielding, 168

    5.13.4 Gradient System, 168

    5.13.5 MR Electronics—The Console, 169

    5.13.6 Rf Coils, 170

    5.14 MRI Safety, 171

    5.14.1 Magnet Safety, 171

    5.14.2 Gradient Safety, 173

    5.15 Imaging Artefacts in MRI, 173

    5.15.1 High Field Effects, 174

    5.16 Advanced MR Technology and Its Possible Future, 175

    References, 175

    6 Toward A 3D View of Cellular Architecture: Correlative Light Microscopy and Electron Tomography 180
    Jack A. Valentijn, Linda F. van Driel, Karen A. Jansen, Karine M. Valentijn, and Abraham J. Koster

    6.1 Introduction, 180

    6.2 Historical Perspective, 181

    6.3 Stains for CLEM, 182

    6.4 Probes for CLEM, 183

    6.4.1 Probes to Detect Exogenous Proteins, 183

    6.4.1.1 Green Fluorescent Protein, 183

    6.4.1.2 Tetracysteine Tags, 186

    6.4.1.3 Theme Variations: Split GFP and GFP-4C, 187

    6.4.2 Probes to Detect Endogenous Proteins, 188

    6.4.2.1 Antifluorochrome Antibodies, 189

    6.4.2.2 Combined Fluorescent and Gold Probes, 189

    6.4.2.3 Quantum Dots, 190

    6.4.2.4 Dendrimers, 191

    6.4.3 Probes to Detect Nonproteinaceous Molecules, 192

    6.5 CLEM Applications, 193

    6.5.1 Diagnostic Electron Microscopy, 193

    6.5.2 Ultrastructural Neuroanatomy, 194

    6.5.3 Live-Cell Imaging, 196

    6.5.4 Electron Tomography, 197

    6.5.5 Cryoelectron Microscopy, 198

    6.5.6 Immuno Electron Microscopy, 201

    6.6 Future Perspective, 202

    References, 205

    7 Tracer Imaging 215
    Rainer Hinz

    7.1 Introduction, 215

    7.2 Instrumentation, 216

    7.2.1 Radioisotope Production, 216

    7.2.2 Radiochemistry and Radiopharmacy, 219

    7.2.3 Imaging Devices, 220

    7.2.4 Peripheral Detectors and Bioanalysis, 225

    7.3 Measurement Techniques, 228

    7.3.1 Tomographic Image Reconstruction, 228

    7.3.2 Quantification Methods, 229

    7.3.2.1 The Flow Model, 230

    7.3.2.2 The Irreversible Model for Deoxyglucose, 230

    7.3.2.3 The Neuroreceptor Binding Model, 233

    7.4 Applications, 234

    7.4.1 Neuroscience, 234

    7.4.1.1 Cerebral Blood Flow, 234

    7.4.1.2 Neurotransmitter Systems, 235

    7.4.1.3 Metabolic and Other Processes, 238

    7.4.2 Cardiology, 240

    7.4.3 Oncology, 240

    7.4.3.1 Angiogenesis, 240

    7.4.3.2 Proliferation, 241

    7.4.3.3 Hypoxia, 241

    7.4.3.4 Apoptosis, 242

    7.4.3.5 Receptor Imaging, 242

    7.4.3.6 Imaging Gene Therapy, 243

    7.4.4 Molecular Imaging for Research in Drug Development, 243

    7.4.5 Small Animal Imaging, 244

    References, 244

    8 Fluorescence Imaging 248
    Nikolaos C. Deliolanis, Christian P. Schultz, and Vasilis Ntziachristos

    8.1 Introduction, 248

    8.2 Contrast Mechanisms, 249

    8.2.1 Endogenous Contrast, 249

    8.2.2 Exogenous Contrast, 251

    8.3 Direct Methods: Fluorescent Probes, 251

    8.4 Indirect Methods: Fluorescent Proteins, 252

    8.5 Microscopy, 253

    8.5.1 Optical Microscopy, 253

    8.5.2 Fluorescence Microscopy, 254

    8.6 Macroscopic Imaging/Tomography, 260

    8.7 Planar Imaging, 260

    8.8 Tomography, 262

    8.8.1 Diffuse Optical Tomography, 266

    8.8.2 Fluorescence Tomography, 266

    8.9 Conclusion, 267

    References, 268

    9 Infrared and Raman Spectroscopic Imaging 275
    Gerald Steiner

    9.1 Introduction, 275

    9.2 Instrumentation, 278

    9.2.1 Infrared Imaging, 278

    9.2.2 Near-Infrared Imaging, 281

    9.3 Raman Imaging, 282

    9.4 Sampling Techniques, 283

    9.5 Data Analysis and Image Evaluation, 285

    9.5.1 Data Preprocessing, 287

    9.5.2 Feature Selection, 287

    9.5.3 Spectral Classification, 288

    9.5.4 Image Processing Including Pattern Recognition, 292

    9.6 Applications, 292

    9.6.1 Single Cells, 292

    9.6.2 Tissue Sections, 292

    9.6.2.1 Brain Tissue, 294

    9.6.2.2 Skin Tissue, 295

    9.6.2.3 Breast Tissue, 298

    9.6.2.4 Bone Tissue, 299

    9.6.3 Diagnosis of Hemodynamics, 300

    References, 301

    10 Coherent Anti-Stokes Raman Scattering Microscopy 304
    Annika Enejder, Christoph Heinrich, Christian Brackmann, Stefan Bernet, and Monika Ritsch-Marte

    10.1 Basics, 304

    10.1.1 Introduction, 304

    10.2 Theory, 306

    10.3 CARS Microscopy in Practice, 309

    10.4 Instrumentation, 310

    10.5 Laser Sources, 311

    10.6 Data Acquisition, 314

    10.7 Measurement Techniques, 316

    10.7.1 Excitation Geometry, 316

    10.7.2 Detection Geometry, 318

    10.7.3 Time-Resolved Detection, 319

    10.7.4 Phase-Sensitive Detection, 319

    10.7.5 Amplitude-Modulated Detection, 320

    10.8 Applications, 320

    10.8.1 Imaging of Biological Membranes, 321

    10.8.2 Studies of Functional Nutrients, 321

    10.8.3 Lipid Dynamics and Metabolism in Living Cells and Organisms, 322

    10.8.4 Cell Hydrodynamics, 324

    10.8.5 Tumor Cells, 325

    10.8.6 Tissue Imaging, 325

    10.8.7 Imaging of Proteins and DNA, 326

    10.9 Conclusions, 326

    References, 327

    11 Biomedical Sonography 331
    Georg Schmitz

    11.1 Basic Principles, 331

    11.1.1 Introduction, 331

    11.1.2 Ultrasonic Wave Propagation in Biological Tissues, 332

    11.1.3 Diffraction and Radiation of Sound, 333

    11.1.4 Acoustic Scattering, 337

    11.1.5 Acoustic Losses, 338

    11.1.6 Doppler Effect, 339

    11.1.7 Nonlinear Wave Propagation, 339

    11.1.8 Biological Effects of Ultrasound, 340

    11.1.8.1 Thermal Effects, 340

    11.1.8.2 Cavitation Effects, 340

    11.2 Instrumentation of Real-Time Ultrasound Imaging, 341

    11.2.1 Pulse-Echo Imaging Principle, 341

    11.2.2 Ultrasonic Transducers, 342

    11.2.3 Beamforming, 344

    11.2.3.1 Beamforming Electronics, 344

    11.2.3.2 Array Beamforming, 345

    11.3 Measurement Techniques of Real-Time Ultrasound Imaging, 347

    11.3.1 Doppler Measurement Techniques, 347

    11.3.1.1 Continuous Wave Doppler, 347

    11.3.1.2 Pulsed Wave Doppler, 349

    11.3.1.3 Color Doppler Imaging and Power Doppler Imaging, 351

    11.3.2 Ultrasound Contrast Agents and Nonlinear Imaging, 353

    11.3.2.1 Ultrasound Contrast Media, 353

    11.3.2.2 Harmonic Imaging Techniques, 356

    11.3.2.3 Perfusion Imaging Techniques, 357

    11.3.2.4 Targeted Imaging, 358

    11.4 Application Examples of Biomedical Sonography, 359

    11.4.1 B-Mode, M-Mode, and 3D Imaging, 359

    11.4.2 Flow and Perfusion Imaging, 362

    References, 365

    12 Acoustic Microscopy for Biomedical Applications 368
    Jürgen Bereiter-Hahn

    12.1 Sound Waves and Basics of Acoustic Microscopy, 368

    12.1.1 Propagation of Sound Waves, 369

    12.1.2 Main Applications of Acoustic Microscopy, 371

    12.1.3 Parameters to Be Determined and General Introduction into Microscopy with Ultrasound, 371

    12.2 Types of Acoustic Microscopy, 372

    12.2.1 Scanning Laser Acoustic Microscope (LSAM), 373

    12.2.2 Pulse-Echo Mode: Reflection-Based Acoustic Microscopy, 373

    12.2.2.1 Reflected Amplitude Measurements, 379

    12.2.2.2 V(z) Imaging, 380

    12.2.2.3 V(f) Imaging, 382

    12.2.2.4 Interference-Fringe-Based Image Analysis, 383

    12.2.2.5 Determination of Phase and the Complex Amplitude, 386

    12.2.2.6 Combining V (f) with Reflected Amplitude and Phase Imaging, 386

    12.2.2.7 Time-Resolved SAM and Full Signal Analysis, 388

    12.3 Biomedical Applications of Acoustic Microscopy, 391

    12.3.1 Influence of Fixation on Acoustic Parameters of Cells and Tissues, 391

    12.3.2 Acoustic Microscopy of Cells in Culture, 392

    12.3.3 Technical Requirements, 393

    12.3.3.1 Mechanical Stability, 393

    12.3.3.2 Frequency, 393

    12.3.3.3 Coupling Fluid, 393

    12.3.3.4 Time of Image Acquisition, 394

    12.3.4 What Is Revealed by SAM: Interpretation of SAM Images, 394

    12.3.4.1 Sound Velocity, Elasticity, and the Cytoskeleton, 395

    12.3.4.2 Attenuation, 400

    12.3.4.3 Viewing Subcellular Structures, 401

    12.3.5 Conclusions, 401

    12.4 Examples of Tissue Investigations using SAM, 403

    12.4.1 Hard Tissues, 404

    12.4.2 Cardiovascular Tissues, 405

    12.4.3 Other Soft Tissues, 406

    References, 406

    Index 415

  • 상품문의

    등록된 상품문의

    상품문의가 없습니다.

  • 반품/교환 방법

    "마이페이지 > 주문조회 > 반품/교환신청", 1:1상담>반품/교환 또는 고객센터(031-948-8090)

    반품/교환 가능 기간

    변심, 구매착오의 경우 수령 후 10일 이내

    전자책 관련(eBook 등)은 반품이 불가합니다.

    파본 등 상품결함 시 '문제점 발견 후 30일' 이내

    반품/교환 비용

    제주도 및 도서산간 지역 발송은 추가비용 발생되며, 비용은 고객부담(제주도 추가비용 4,000원)

    변심 혹은 구매착오의 경우에만 반송료 고객 부담(왕복 배송비 고객 부담)

    * 해외 직배송도서 취소수수료 : 수입제반비용(국내 까지의 운송비, 관세사비, 보세창고료, 내륙 운송비, 통관비 등)에 따른 비용

    반품/교환 불가 사유

    해외 직배송도서는 반품이 불가합니다.

    사용, 파본, 포장개봉에 의해 상품결함 등 상품가치가 현저히 감소한 상품

    전자책 관련(eBook 등)은 반품이 불가합니다.

    소비자 피해보상

    환불지연에 따른 배상

    - 상품의 불량에 의한 반품, 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은 소비자분쟁해결기준 (공정거래위원회 고시)에 준하여 처리됨

    - 대금 환불 및 환불 지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의 소비자 보호에 관한 법률에 따라 처리함

선택된 옵션

  • (ebook) Biomedical Imaging: Principles and Applications
    +0원

관련도서