본문 바로가기

The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition > KAIST

본문 바로가기

회원메뉴

쇼핑몰 검색

회원로그인

회원가입

오늘 본 상품 1

  • The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition
    The Elemen 94,000
The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition > KAIST
메인으로

The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition 요약정보 및 구매

The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition

저자 : Trevor Hastie, Robert Tibshirani, Jerome Friedman

상품 선택옵션 0 개, 추가옵션 0 개

위시리스트0
시중가격 99,000원
판매가격 94,000원
출판사 Springer
발행일20090201
ISBN 9780387848570
페이지00745
크기 238.76 x 190.5
언어 ENG
무게 138346
배송비결제 주문시 결제

선택된 옵션

  • The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition
    +0원
위시리스트
  • 상품 정보

    상품 상세설명


    During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It is a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book.

    This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for wide'' data (p bigger than n), including multiple testing and false discovery rates.

    Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting.

    상품 정보 고시

  • 사용후기

  • 상품문의

    등록된 상품문의

    상품문의가 없습니다.

  • 반품/교환 방법

    "마이페이지 > 주문조회 > 반품/교환신청", 1:1상담>반품/교환 또는 고객센터(031-948-8090)

    반품/교환 가능 기간

    변심, 구매착오의 경우 수령 후 10일 이내

    전자책 관련(eBook 등)은 반품이 불가합니다.

    파본 등 상품결함 시 '문제점 발견 후 30일' 이내

    반품/교환 비용

    제주도 및 도서산간 지역 발송은 추가비용 발생되며, 비용은 고객부담(제주도 추가비용 4,000원)

    변심 혹은 구매착오의 경우에만 반송료 고객 부담(왕복 배송비 고객 부담)

    * 해외 직배송도서 취소수수료 : 수입제반비용(국내 까지의 운송비, 관세사비, 보세창고료, 내륙 운송비, 통관비 등)에 따른 비용

    반품/교환 불가 사유

    해외 직배송도서는 반품이 불가합니다.

    사용, 파본, 포장개봉에 의해 상품결함 등 상품가치가 현저히 감소한 상품

    전자책 관련(eBook 등)은 반품이 불가합니다.

    소비자 피해보상

    환불지연에 따른 배상

    - 상품의 불량에 의한 반품, 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은 소비자분쟁해결기준 (공정거래위원회 고시)에 준하여 처리됨

    - 대금 환불 및 환불 지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의 소비자 보호에 관한 법률에 따라 처리함

선택된 옵션

  • The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition
    +0원

관련도서