본문 바로가기

(eBook) Digital Signal Processing First, Global Edition > eBook

본문 바로가기

회원메뉴

쇼핑몰 검색

회원로그인

회원가입

오늘 본 상품 1

  • (eBook) Digital Signal Processing First, Global Edition
    (eBook) Di 48,000
(eBook) Digital Signal Processing First, Global Edition > eBook
메인으로

(eBook) Digital Signal Processing First, Global Edition 요약정보 및 구매

저자 : James H. McClellan

상품 선택옵션 0 개, 추가옵션 0 개

위시리스트0
판매가격 48,000원
출판사 Pearson
발행일2017
ISBN 9781292113876
언어 ENG
포인트 0점
배송비결제 주문시 결제

선택된 옵션

  • (eBook) Digital Signal Processing First, Global Edition
    +0원
위시리스트
  • 상품 정보

    상품 상세설명


    For introductory courses (freshman and sophomore courses) in Digital Signal Processing and Signals and Systems. Text may be used before the student has taken a course in circuits.



    DSP First and its accompanying digital assets are the result of more than 20 years of work that originated from, and was guided by, the premise that signal processing is the best starting point for the study of electrical and computer engineering. The "DSP First" approach introduces the use of mathematics as the language for thinking about engineering problems, lays the groundwork for subsequent courses, and gives students hands-on experiences with MATLAB. 



    The Second Edition features three new chapters on the Fourier Series, Discrete-Time Fourier Transform, and the The Discrete Fourier Transform as well as updated labs, visual demos, an update to the existing chapters, and hundreds of new homework problems and solutions.

    상품 정보 고시

  • 사용후기

    Introduction   


    1-1 Mathematical Representation of Signals  


    1-2 Mathematical Representation of Systems


    1-3 Systems as Building Blocks


    1-4 The Next Step




    Sinusoids


    2-1 Tuning Fork Experiment   


    2-2 Review of Sine and Cosine Functions


    2-3 Sinusoidal Signals


    2-3.1 Relation of Frequency to Period


    2-3.2   Phase and Time Shift


    2-4 Sampling and Plotting Sinusoids


    2-5 Complex Exponentials and Phasors


    2-5.1 Review of Complex Numbers


    2-5.2 Complex Exponential Signals


    2-5.3   The Rotating Phasor Interpretation


    2-5.4   Inverse Euler Formulas Phasor Addition


    2-6 Phasor Addition


    2-6.1   Addition of Complex Numbers


    2-6.2   Phasor Addition Rule


    2-6.3   Phasor Addition Rule: Example


    2-6.4   MATLAB Demo of Phasors


    2-6.5   Summary of the Phasor Addition Rule Physics of the Tuning Fork


    2-7.1   Equations from Laws of Physics


    2-7.2   General Solution to the Differential Equation


    2-7.3   Listening to Tones


    2-8 Time Signals: More Than Formulas


    Summary and Links


    Problems



    Spectrum Representation  


    3-1 The Spectrum of a Sum of Sinusoids


    3-1.1   Notation Change


    3-1.2   Graphical Plot of the Spectrum


    3-1.3   Analysis vs. Synthesis


    Sinusoidal Amplitude Modulation


    3-2.1   Multiplication of Sinusoids


    3-2.2   Beat Note Waveform


    3-2.3   Amplitude Modulation


    3-2.4   AM Spectrum


    3-2.5   The Concept of Bandwidth


    Operations on the Spectrum


    3-3.1   Scaling or Adding a Constant


    3-3.2   Adding Signals


    3-3.3   Time-Shifting x.t/ Multiplies ak by a Complex Exponential


    3-3.4   Differentiating x.t/ Multiplies ak by .j 2nfk/


    3-3.5   Frequency Shifting


    Periodic Waveforms


    3-4.1   Synthetic Vowel


    3-4.3   Example of a Non-periodic Signal


    Fourier Series


    3-5.1   Fourier Series: Analysis


    3-5.2   Analysis of a Full-Wave Rectified Sine Wave


    3-5.3   Spectrum of the FWRS Fourier Series


    3-5.3.1  DC Value of Fourier Series


    3-5.3.2  Finite Synthesis of a Full-Wave Rectified Sine


    Time–Frequency Spectrum


    3-6.1   Stepped Frequency


    3-6.2   Spectrogram Analysis


    Frequency Modulation: Chirp Signals


    3-7.1   Chirp or Linearly Swept Frequency


    3-7.2   A Closer Look at Instantaneous Frequency


    Summary and Links


    Problems



    Fourier Series


    Fourier Series Derivation


    4-1.1   Fourier Integral Derivation


    Examples of Fourier Analysis


    4-2.1   The Pulse Wave


    4-2.1.1  Spectrum of a Pulse Wave


    4-2.1.2  Finite Synthesis of a Pulse Wave


    4-2.2   Triangle Wave


    4-2.2.1  Spectrum of a Triangle Wave


    4-2.2.2  Finite Synthesis of a Triangle Wave


    4-2.3   Half-Wave Rectified Sine


    4-2.3.1  Finite Synthesis of a Half-Wave Rectified Sine


    Operations on Fourier Series


    4-3.1   Scaling or Adding a Constant


    4-3.2   Adding Signals


    4-3.3   Time-Scaling


    4-3.4   Time-Shifting x.t/ Multiplies ak by a Complex Exponential


    4-3.5   Differentiating x.t/ Multiplies ak by .j!0k/


    4-3.6   Multiply x.t/ by Sinusoid


    Average Power, Convergence, and Optimality


    4-4.1   Derivation of Parseval’s Theorem


    4-4.2   Convergence of Fourier Synthesis


    4-4.3   Minimum Mean-Square Approximation


    Pulsed-Doppler Radar Waveform


    4-5.1   Measuring Range and Velocity


    Problems




    Sampling and Aliasing  


    Sampling


    5-1.1   Sampling Sinusoidal Signals


    5-1.2   The Concept of Aliasing


    5-1.3   Spectrum of a Discrete-Time Signal


    5-1.4   The Sampling Theorem


    5-1.5   Ideal Reconstruction


    Spectrum View of Sampling and Reconstruction


    5-2.1   Spectrum of a Discrete-Time Signal Obtained by Sampling


    5-2.2   Over-Sampling


    5-2.3   Aliasing Due to Under-Sampling


    5-2.4   Folding Due to Under-Sampling


    5-2.5   Maximum Reconstructed Frequency


    Strobe Demonstration


    5-3.1   Spectrum Interpretation


    Discrete-to-Continuous Conversion


    5-4.1   Interpolation with Pulses


    5-4.2   Zero-Order Hold Interpolation


    5-4.3   Linear Interpolation


    5-4.4   Cubic Spline Interpolation


    5-4.5   Over-Sampling Aids Interpolation


    5-4.6   Ideal Bandlimited Interpolation


    The Sampling Theorem


    Summary and Links


    Problems



    FIR Filters    


    6-1 Discrete-Time Systems


    6-2 The Running-Average Filter


    6-3 The General FIR Filter


    6-3.1   An Illustration of FIR Filtering


    The Unit Impulse Response and Convolution


    6-4.1   Unit Impulse Sequence


    6-4.2   Unit Impulse Response Sequence


    6-4.2.1  The Unit-Delay System


    6-4.3   FIR Filters and Convolution


    6-4.3.1  Computing the Output of a Convolution


    6-4.3.2  The Length of a Convolution


    6-4.3.3  Convolution in MATLAB


    6-4.3.4  Polynomial Multiplication in MATLAB


    6-4.3.5  Filtering the Unit-Step Signal


    6-4.3.6  Convolution is Commutative


    6-4.3.7  MATLAB GUI for Convolution


    Implementation of FIR Filters


    6-5.1   Building Blocks


    6-5.1.1  Multiplier


    6-5.1.2  Adder


    6-5.1.3  Unit Delay


    6-5.2   Block Diagrams


    6-5.2.1  Other Block Diagrams


    6-5.2.2  Internal Hardware Details


    Linear Time-Invariant (LTI) Systems


    6-6.1   Time Invariance


    6-6.2   Linearity


    6-6.3   The FIR Case


    Convolution and LTI Systems


    6-7.1   Derivation of the Convolution Sum


    6-7.2   Some Properties of LTI Systems


    Cascaded LTI Systems


    Example of FIR Filtering


    Summary and Links



    ProblemsFrequency Response of FIR Filters


    7-1 Sinusoidal Response of FIR Systems


    7-2 Superposition and the Frequency Response


    7-3 Steady-State and Transient Response


    7-4 Properties of the Frequency Response


    7-4.1   Relation to Impulse Response and Difference Equation


    7-4.2   Periodicity of H.ej !O /


    7-4.3   Conjugate Symmetry Graphical Representation of the Frequency Response


    7-5.1   Delay System


    7-5.2   First-Difference System


    7-5.3   A Simple Lowpass Filter Cascaded LTI Systems


    Running-Sum Filtering


    7-7.1   Plotting the Frequency Response


    7-7.2   Cascade of Magnitude and Phase


    7-7.3   Frequency Response of Running Averager


    7-7.4   Experiment: Smoothing an Image


    Filtering Sampled Continuous-Time Signals


    7-8.1   Example: Lowpass Averager


    7-8.2   Interpretation of Delay


    Summary and Links


    Problems



    The Discrete-Time Fourier Transform


    DTFT: Discrete-Time Fourier Transform


    8-1.1   The Discrete-Time Fourier Transform


    8-1.1.1  DTFT of a Shifted Impulse Sequence


    8-1.1.2  Linearity of the DTFT


    8-1.1.3  Uniqueness of the DTFT


    8-1.1.4  DTFT of a Pulse


    8-1.1.5  DTFT of a Right-Sided Exponential Sequence


    8-1.1.6  Existence of the DTFT


    8-1.2   The Inverse DTFT


    8-1.2.1  Bandlimited DTFT


    8-1.2.2  Inverse DTFT for the Right-Sided Exponential


    8-1.3   The DTFT is the Spectrum


    Properties of the DTFT


    8-2.1   The Linearity Property


    8-2.2   The Time-Delay Property


    8-2.3   The Frequency-Shift Property


    8-2.3.1  DTFT of a Complex Exponential


    8-2.3.2  DTFT of a Real Cosine Signal


    8-2.4   Convolution and the DTFT


    8-2.4.1  Filtering is Convolution


    8-2.5   Energy Spectrum and the Autocorrelation Function


    8-2.5.1  Autocorrelation Function


    Ideal Filters


    8-3.1   Ideal Lowpass Filter


    8-3.2   Ideal Highpass Filter


    8-3.3   Ideal Bandpass Filter


    Practical FIR Filters


    8-4.1   Windowing


    8-4.2   Filter Design


    8-4.2.1  Window the Ideal Impulse Response


    8-4.2.2  Frequency Response of Practical Filters


    8-4.2.3  Passband Defined for the Frequency Response


    8-4.2.4  Stopband Defined for the Frequency Response


    8-4.2.5  Transition Zone of the LPF


    8-4.2.6  Summary of Filter Specifications


    8-4.3   GUI for Filter Design


    Table of Fourier Transform Properties and Pairs


    Summary and Links


    Problems



    The Discrete Fourier Transform  


    Discrete Fourier Transform (DFT)


    9-1.1   The Inverse DFT


    9-1.2   DFT Pairs from the DTFT


    9-1.2.1  DFT of Shifted Impulse


    9-1.2.2  DFT of Complex Exponential


    9-1.3   Computing the DFT


    9-1.4   Matrix Form of the DFT and IDFT


    Properties of the DFT


    9-2.1   DFT Periodicity for XŒk]


    9-2.2   Negative Frequencies and the DFT


    9-2.3   Conjugate Symmetry of the DFT


    9-2.3.1  Ambiguity at XŒN=2]


    9-2.4   Frequency Domain Sampling and Interpolation


    9-2.5   DFT of a Real Cosine Signal


    Inherent Periodicity of xŒn] in the DFT


    9-3.1   DFT Periodicity for xŒn]


    9-3.2   The Time Delay Property for the DFT


    9-3.2.1  Zero Padding


    9-3.3   The Convolution Property for the DFT


    Table of Discrete Fourier Transform Properties and Pairs


    Spectrum Analysis of Discrete Periodic Signals


    9-5.1   Periodic Discrete-time Signal: Fourier Series


    9-5.2   Sampling Bandlimited Periodic Signals


    9-5.3   Spectrum Analysis of Periodic Signals


    Windows


    9-6.0.1  DTFT of Windows


    The Spectrogram


    9-7.1   An Illustrative Example


    9-7.2   Time-Dependent DFT


    9-7.3   The Spectrogram Display


    9-7.4   Interpretation of the Spectrogram


    9-7.4.1  Frequency Resolution


    9-7.5   Spectrograms in MATLAB


    The Fast Fourier Transform (FFT)


    9-8.1   Derivation of the FFT


    9-8.1.1  FFT Operation Count


    Summary and Links


    Problems


    z-Transforms  


    Definition of the z-Transform


    Basic z-Transform Properties


    10-2.1  Linearity Property of the z-Transform


    10-2.2  Time-Delay Property of the z-Transform


    10-2.3  A General z-Transform Formula


    The z-Transform and Linear Systems


    10-3.1  Unit-Delay System


    10-3.2  z-1 Notation in Block Diagrams


    10-3.3   The z-Transform of an FIR Filter


    10-3.4   z-Transform of the Impulse Response


    10-3.5  Roots of a z-transform Polynomial


    Convolution and the z-Transform


    10-4.1  Cascading Systems


    10-4.2  Factoring z-Polynomials


    10-4.3  Deconvolution


    Relationship Between the z-Domain and the !O -Domain


    10-5.1   The z-Plane and the Unit Circle


    The Zeros and Poles of H.z/


    10-6.1  Pole-Zero Plot


    10-6.2   Significance of the Zeros of H.z/


    10-6.3  Nulling Filters


    10-6.4  Graphical Relation Between z and !O


    10-6.5  Three-Domain Movies


    Simple Filters


    10-7.1   Generalize the L-Point Running-Sum Filter


    10-7.2  A Complex Bandpass Filter


    10-7.3  A Bandpass Filter with Real Coefficients


    Practical Bandpass Filter Design


    Properties of Linear-Phase Filters


    10-9.1  The Linear-Phase Condition


    10-9.2  Locations of the Zeros of FIR Linear-Phase Systems


    Summary and Links


    Problems


    IIR Filters


    The General IIR Difference Equation


    Time-Domain Response


    11-2.1  Linearity and Time Invariance of IIR Filters


    11-2.2  Impulse Response of a First-Order IIR System


    11-2.3  Response to Finite-Length Inputs


    11-2.4  Step Response of a First-Order Recursive System


    System Function of an IIR Filter


    11-3.1  The General First-Order Case


    11-3.2  H.z/ from the Impulse Response


    11-3.3  The z-Transform Method


    The System Function and Block-Diagram Structures


    11-4.1  Direct Form I Structure


    11-4.2  Direct Form II Structure


    11-4.3  The Transposed Form Structure


    Poles and Zeros


    11-5.1  Roots in MATLAB


    11-5.2  Poles or Zeros at z D 0 or 1


    11-5.3  Output Response from Pole Location


    Stability of IIR Systems


    11-6.1  The Region of Convergence and Stability


    Frequency Response of an IIR Filter


    11-7.1  Frequency Response using MATLAB


    11-7.2  Three-Dimensional Plot of a System Function


    Three Domains


    The Inverse z-Transform and Some Applications


    11-9.1  Revisiting the Step Response of a First-Order System


    11-9.2  A General Procedure for Inverse z-Transformation


    Steady-State Response and Stability


    Second-Order Filters


    11-11.1 z-Transform of Second-Order Filters


    11-11.2 Structures for Second-Order IIR Systems


    11-11.3 Poles and Zeros


    11-11.4 Impulse Response of a Second-Order IIR System


    11-11.4.1  Distinct Real Poles


    11-11.5 Complex Poles


    Frequency Response of Second-Order IIR Filter


    11-12.1 Frequency Response via MATLAB


    11-12.23-dB Bandwidth


    11-12.3 Three-Dimensional Plot of System Functions


    Example of an IIR Lowpass Filter


    Summary and Links


    Problems

  • 상품문의

    등록된 상품문의

    상품문의가 없습니다.

  • 반품/교환 방법

    "마이페이지 > 주문조회 > 반품/교환신청", 1:1상담>반품/교환 또는 고객센터(031-948-8090)

    반품/교환 가능 기간

    변심, 구매착오의 경우 수령 후 10일 이내

    전자책 관련(eBook 등)은 반품이 불가합니다.

    파본 등 상품결함 시 '문제점 발견 후 30일' 이내

    반품/교환 비용

    제주도 및 도서산간 지역 발송은 추가비용 발생되며, 비용은 고객부담(제주도 추가비용 4,000원)

    변심 혹은 구매착오의 경우에만 반송료 고객 부담(왕복 배송비 고객 부담)

    * 해외 직배송도서 취소수수료 : 수입제반비용(국내 까지의 운송비, 관세사비, 보세창고료, 내륙 운송비, 통관비 등)에 따른 비용

    반품/교환 불가 사유

    해외 직배송도서는 반품이 불가합니다.

    사용, 파본, 포장개봉에 의해 상품결함 등 상품가치가 현저히 감소한 상품

    전자책 관련(eBook 등)은 반품이 불가합니다.

    소비자 피해보상

    환불지연에 따른 배상

    - 상품의 불량에 의한 반품, 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은 소비자분쟁해결기준 (공정거래위원회 고시)에 준하여 처리됨

    - 대금 환불 및 환불 지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의 소비자 보호에 관한 법률에 따라 처리함

선택된 옵션

  • (eBook) Digital Signal Processing First, Global Edition
    +0원

관련도서