본문 바로가기

RF and Microwave Circuit Design - Theory and Applications > 외국도서

본문 바로가기

회원메뉴

쇼핑몰 검색

회원로그인

회원가입

오늘 본 상품 1

  • RF and Microwave Circuit Design - Theory and Applications
    RF and Mic 66,000
RF and Microwave Circuit Design - Theory and Applications > 외국도서
메인으로

RF and Microwave Circuit Design - Theory and Applications 요약정보 및 구매

저자 : CF Free

상품 선택옵션 0 개, 추가옵션 0 개

위시리스트0
시중가격 70,000원
판매가격 66,000원
출판사 John Wiley & Sons Inc
발행일7 Oct 2021
ISBN 9781119114635
페이지528 pages
크기 223 x 282 x 37 (mm)
언어 ENG
국가 US
무게 1534g
원산지 US
포인트 0점
배송비결제 주문시 결제

선택된 옵션

  • RF and Microwave Circuit Design - Theory and Applications
    +0원
위시리스트
  • 상품 정보

    상품 상세설명


    This textbook covers a typical modern syllabus in radio frequency or microwave design at final year undergraduate or first year postgraduate level. The content has been chosen to include all of the basic topics necessary to give a rigorous introduction to high-frequency technology. Both the content and presentation reflect the considerable experience which both authors have in teaching and research at university level.

    The material is presented from first principles, and relies only on students having a reasonable grasp of basic electronic principles. One of the key features of the book is the inclusion of an extensive set of worked examples to guide the student reader who has no prior knowledge of the subject. 

    상품 정보 고시

  • 사용후기

    Table of Contents:

    Preface

    1. RF Transmission lines

    1.0 Introduction

    1.1 Voltage, current and impedance relationships on a transmission line

    1.2 Propagation constant

    1.2.1 Dispersion

    1.2.2 Amplitude distortion

    1.3 Lossless transmission lines

    1.4 Matched and mismatched transmission lines

    1.5 Waves on a transmission line

    1.6 The Smith chart

    1.6.1 Derivation of the chart

    1.6.2 Properties of the chart

    1.7 Stubs

    1.8 Distributed matching circuits

    1.9 Manipulation of lumped impedance using the Smith chart

    1.10 Lumped impedance matching

    1.10.1 Matching a complex load impedance to a real source impedance

    1.10.2 Matching a complex load impedance to a complex source impedance

    1.11 Equivalent lumped circuit of a lossless transmission line

    1.12 Supplementary problems

    1.13 Appendices

    Appendix A1.1 Coaxial cable

    A1.1.1 Electromagnetic field patterns in coaxial cable

    A1.1.2 Essential properties of coaxial cables

    Appendix A1.2 Coplanar waveguide

    A1.2.1 Structure of coplanar waveguide (CPW)

    A1.2.2 Electromagnetic field distribution on a CPW line

    A1.2.3 Essential properties of coplanar (CPW) lines

    A1.2.4 Summary of key points relating to CPW lines

    Appendix A1.3 Metal waveguide

    A1.3.1 Waveguide principles

    A1.3.2 Waveguide propagation

    A1.3.3 Rectangular waveguide modes

    A1.3.4 The waveguide equation

    A1.3.5 Phase and group velocities

    A1.3.6 Field theory analysis of rectangular waveguides

    A1.3.7 Waveguide impedance

    A1.3.8 Higher-order rectangular waveguide modes

    A1.3.9 Waveguide attenuation

    A1.3.10 Sizes of rectangular waveguide, and waveguide designation

    A1.3.11 Circular waveguide

    Appendix A1.4 Microstrip

    Appendix A1.5 Equivalent lumped circuit representation of a transmission line

    References

    2. Planar Circuit Design I: Designing using Microstrip

    2.0 Introduction

    2.1 Electromagnetic field distribution across a microstrip line

    2.2 Effective relative permittivity,

    2.3 Microstrip design graphs and CAD software

    2.4 Operating frequency limitations

    2.5 Skin depth

    2.6 Examples of microstrip components

    2.6.1 Branch-line coupler

    2.6.2 Quarter-wave transformer

    2.6.3 Wilkinson power divider

    2.7 Microstrip coupled-line structures

    2.7.1 Analysis of microstrip coupled lines

    2.7.2 Microstrip directional couplers

    2.7.2.1 Design of microstrip directional couplers

    2.7.2.2 Directivity of microstrip directional couplers

    2.7.2.3 Improvements to microstrip directional couplers

    2.7.3 Examples of other common microstrip coupled-line structures

    2.7.3.1 Microstrip DC break

    2.7.3.2 Edge-coupled microstrip band-pass filter

    2.7.3.3 Lange coupler

    2.8 Summary

    2.9 Supplementary problems

    2.10 Appendix A2.1: Microstrip design graphs

    References

    3. Fabrication processes for RF and microwave circuits

    3.1 Introduction

    3.2 Review of essential materials parameters

    3.2.1 Dielectrics

    3.2.2 Conductors

    3.3 Requirements for RF circuit materials

    3.4 Fabrication of planar high-frequency circuits

    3.4.1 Etched circuits

    3.4.2 Thick-film circuits (direct screen printed)

    3.4.3 Thick-film circuits (using photoimageable materials)

    3.4.4 LTCC (low temperature co-fired ceramic) circuits

    3.4.5 Use of ink jet technology

    3.5 Characterization of materials for RF and microwave circuits

    3.5.1 Measurement of dielectric loss and dielectric constant

    3.5.1.1 Cavity resonators

    3.5.1.2 Dielectric characterization by cavity perturbation

    3.5.1.3 Use of the split post dielectric resonator (SPDR)

    3.5.1.4 Open-resonator

    3.5.1.5 Free-space transmission measurements

    3.5.2 Measurement of planar line properties

    3.5.2.1 The microstrip resonant ring

    3.5.2.2 Non-resonant lines

    3.5.3 Physical properties of microstrip lines

    3.6 Supplementary problems

    references

    4. Planar Circuit Design II: Refinements to basic designs

    4.1 Introduction

    4.2 Discontinuities in microstrip

    4.2.1 Open-end effect

    4.2.2 Step width

    4.2.3 Corners

    4.2.4 Gaps

    4.2.5 T-junctions

    4.3 Microstrip enclosures

    4.4 Packaged lumped-element passive components

    4.4.1 Typical packages for RF passive components

    4.4.2 Lumped-element resistors

    4.4.3 Lumped-element capacitors

    4.4.4 Lumped-element inductors

    4.5 Miniature planar components

    4.5.1 Spiral inductors

    4.5.2 Loop inductors

    4.5.3 Interdigitated capacitors

    4.5.4 MIM (metal-insulator-metal) capacitors

    4.6 Appendix 4.1: Insertion loss due to a microstrip gap

    References

    5. S-parameters

    5.1 Introduction

    5.2 S-parameter definitions

    5.3 Signal flow graphs

    5.4 Mason's non-touching loop rule

    5.5 Reflection coefficient of a 2-port network

    5.6 Power gains of two-port networks

    5.7 Stability

    5.8 Supplementary Problems

    5.9 Appendix A5.1 Relationships between network parameters

    A5.1.1 Transmission parameters (ABCD parameters)

    A5.1.2 Admittance parameters (Y-parameters)

    A5.1.3 Impedance parameters (Z-parameters)

    References

    6. Microwave Ferrites

    6.1 Introduction

    6.2 Basic properties of ferrite materials

    6.2.1 Ferrite materials

    6.2.2 Precession in ferrite materials

    6.2.3 Permeability tensor

    6.2.4 Faraday rotation

    6.3 Ferrites in metallic waveguide

    6.3.1 Resonance isolator

    6.3.2 Field displacement isolator

    6.3.3 Waveguide circulator

    6.4 Ferrites in planar circuits

    6.4.1 Planar circulators

    6.4.2 Edge-guided-mode propagation

    6.4.3 Edge-guided-mode isolator

    6.4.4 Phase shifters

    6.5 Self-biased ferrites

    6.6 Supplementary problems

    References

    7. Measurements

    7.1 Introduction

    7.2 RF and Microwave connectors

    7.2.1 Maintenance of connectors

    7.2.2 Connecting to planar circuits

    7.3 Microwave vector network analyzers

    7.3.1 Description and configuration

    7.3.2 Error models representing a VNA

    7.3.3 Calibration of a VNA

    7.4 On-wafer measurements

    7.5 Summary

    References

    8. RF Filters

    8.1 Introduction

    8.2 Review of filter responses

    8.3 Filter parameters

    8.4 Design strategy for RF and microwave filters

    8.5 Multi-element low-pass filter

    8.6 Practical filter responses

    8.7 Butterworth (or maximally-flat) response

    8.7.1 Butterworth low-pass filter

    8.7.3 Butterworth band-pass filter

    8.7.3 Butterworth band-pass filter

    8.8 Chebyshev (equal ripple) response

    8.9 Microstrip low-pass filter, using stepped impedances

    8.10 Microstrip low-pass filter, using stubs

    8.11 Microstrip edge-coupled band-pass filters

    8.12 Microstrip end-coupled band-pass filters

    8.13 Practical points associated with filter design

    8.14 Summary

    8.15 Supplementary problems

    8.16 Appendix A8.1 Equivalent lumped T-network representation of a transmission line

    References

    9. Microwave Small-Signal Amplifiers

    9.1 Introduction

    9.2 Conditions for matching

    9.3 Distributed (microstrip) matching networks

    9.4 DC biasing circuits

    9.5 Microwave transistor packages

    9.6 Typical hybrid amplifier

    9.7 DC finger breaks

    9.8 Constant gain circles

    9.9 Stability circles

    9.10 Noise circles

    9.11 Low-noise amplifier design

    9.12 Simultaneous conjugate match

    9.13 Broadband matching

    9.14 Summary

    9.15 Supplementary problems

    References

    10. Switches and Phase Shifters

    10.1 Introduction

    10.2 Switches

    10.2.1 PIN diodes

    10.2.2 FETs (Field Effect Transistors)

    10.2.3 MEMS (Microelectromechanical Systems)

    10.2.4 IPCS (Inline Phase Change Switch) devices

    10.3 Digital phase shifters

    10.3.1 Switched-path phase shifter

    10.3.2 Loaded-line phase shifter

    10.3.3 Reflection-type phase shifter

    10.3.4 Schiffman 90 phase shifter

    10.3.5 Single switch phase shifter

    10.4 Supplementary problems

    References

    11. Oscillators

    11.1 Introduction

    11.2 Criteria for oscillation in a feedback circuit

    11.3 RF (transistor) oscillators

    11.3.1 Colpitts oscillator

    11.3.2 Hartley Oscillator

    11.3.3 Clapp-Gouriet Oscillator

    11.4 Voltage controlled oscillator (VCO)

    11.5 Crystal-controlled oscillators

    11.5.1 Crystals

    11.5.2 Crystal-controlled oscillators

    11.6 Frequency synthesizers

    11.6.1 The phase-locked loop

    11.6.1.1 Principle of a phase-locked loop

    11.6.1.2 Main components of a phase-locked loop

    11.6.1.3 Gain of a phase-locked loop

    11.6.1.4 Transient analysis of a phase-locked loop

    11.6.2 Indirect frequency synthesizer circuits

    11.7 Microwave oscillators

    11.7.1 Dielectric resonator oscillator

    11.7.2 Delay line stabilized oscillator

    11.7.3 Diode oscillators

    11.7.3.1 Gunn diode oscillator

    11.7.3.2 IMPATT diode oscillator

    11.8 Oscillator noise

    11.9 Measurement of oscillator noise

    11.10 Supplementary problems

    References

    12. RF and Microwave Antennas

    12.1 Introduction

    12.2 Antenna parameters

    12.3 Spherical polar coordinates

    12.4 Radiation from a Hertzian dipole

    12.4.1 Basic principles

    12.4.2 Gain of a Hertzian dipole

    12.5 Radiation from a half-wave dipole

    12.5.1 Basic principles

    12.5.2 Gain of a half-wave dipole

    12.5.3 Summary of the properties of a half-wave dipole

    12.6 Antenna arrays

    12.7 Mutual impedance

    12.8 Arrays containing parasitic elements

    12.9 Yagi-Uda array

    12.10 Log-periodic array

    12.11 Loop antenna

    12.12 Planar antennas

    12.12.1 Linearly polarized patch antennas

    12.12.2 Circularly polarized planar antennas

    12.13 Horn antennas

    12.14 Parabolic reflector antennas

    12.15 Slot radiators

    12.16 Supplementary problems

    12.17 Appendix: Microstrip design graphs for substrates with r = 2.3

    References

    13. Power Amplifiers and Distributed Amplifiers

    13.1 Introduction

    13.2 Power amplifiers

    13.2.1 Overview of power amplifier parameters

    13.2.1.1 Power gain

    13.2.1.2 Power added efficiency (PAE)

    13.2.1.3 Input and output impedances

    13.2.2 Distortion

    13.2.2.1 Gain compression

    13.2.2.2 Third-order intercept point

    13.2.3 Linearization

    13.2.3.1 Pre-distortion

    13.2.3.2 Negative feedback

    13.2.3.3 Feedforward

    13.2.4 Power combining

    13.2.5 Doherty amplifier

    13.3 Load matching of power amplifiers

    13.4 Distributed amplifiers

    13.4.1 Description and principle of operation

    13.4.2 Analysis

    13.5 Developments in materials and packaging for power amplifiers

    References

    14. Receivers and Sub-Systems

    14.1 Introduction

    14.2 Receiver noise sources

    14.2.1 Thermal noise

    14.2.2 Semiconductor noise

    14.3 Noise measures

    14.3.1 Noise figure (F)

    14.3.2 Noise temperature (Te)

    14.4 Noise figure of cascaded networks

    14.5 Antenna noise temperature

    14.6 System noise temperature

    14.7 Noise figure of a matched attenuator

    14.8 Superhet receiver

    14.8.1 Single-conversion superhet receiver

    14.8.2 Image frequency

    14.8.3 Key figures-of-merit for a superhet receiver

    14.8.4 Double-conversion superhet receiver

    14.8.5 Noise budget graph for a superhet receiver

    14.9 Mixers

    14.9.1 Basic mixer principles

    14.9.2 Mixer parameters

    14.9.3 Active and passive mixers

    14.9.4 Single-ended diode mixer

    14.9.5 Single balanced mixer

    14.9.6 Double balanced mixer

    14.9.7 Active FET mixers

    14.10 Supplementary problems

    14.11 Appendices

    Appendix A14.1 Error function table

    Appendix A14.2 Measurement of noise figure

    References
    Answers to selected supplementary problems


  • 상품문의

    등록된 상품문의

    상품문의가 없습니다.

  • 반품/교환 방법

    "마이페이지 > 주문조회 > 반품/교환신청", 1:1상담>반품/교환 또는 고객센터(031-948-8090)

    반품/교환 가능 기간

    변심, 구매착오의 경우 수령 후 10일 이내

    전자책 관련(eBook 등)은 반품이 불가합니다.

    파본 등 상품결함 시 '문제점 발견 후 30일' 이내

    반품/교환 비용

    제주도 및 도서산간 지역 발송은 추가비용 발생되며, 비용은 고객부담(제주도 추가비용 4,000원)

    변심 혹은 구매착오의 경우에만 반송료 고객 부담(왕복 배송비 고객 부담)

    * 해외 직배송도서 취소수수료 : 수입제반비용(국내 까지의 운송비, 관세사비, 보세창고료, 내륙 운송비, 통관비 등)에 따른 비용

    반품/교환 불가 사유

    해외 직배송도서는 반품이 불가합니다.

    사용, 파본, 포장개봉에 의해 상품결함 등 상품가치가 현저히 감소한 상품

    전자책 관련(eBook 등)은 반품이 불가합니다.

    소비자 피해보상

    환불지연에 따른 배상

    - 상품의 불량에 의한 반품, 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은 소비자분쟁해결기준 (공정거래위원회 고시)에 준하여 처리됨

    - 대금 환불 및 환불 지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의 소비자 보호에 관한 법률에 따라 처리함

선택된 옵션

  • RF and Microwave Circuit Design - Theory and Applications
    +0원

관련도서